
Compaction Enhancements:
Increased Storage Density

and Time Series
Made Much Easier

Raphael S. Carvalho
Software Engineer

Raphael S. Carvalho

■ Member of the ScyllaDB storage team

■ Responsible for the compaction subsystem

■ Previously worked on Syslinux and OSv

Software Engineer at ScyllaDB

Agenda
■ Space optimization for incremental compaction

■ “Bucketless” time series, i.e. time series made much easier for you

■ Upcoming improvements

Let’s take a look back
■ Incremental compaction (ICS) introduced in enterprise release 2019.1.4

■ Known for combining techniques from both size-tiered and leveled strategies

■ Fixes the 100% space overhead problem in size-tiered compaction, increasing disk utilization significantly.

Is it enough?
■ Space overhead in tiered compaction was efficiently fixed, however…

■ Incremental (ICS) and size-tiered (STCS) strategies share the same space amplification (~2-4x)
with overwrite workloads, where:

• They cover a similar region in the three-dimensional efficiency space, also known as RUM conjecture
trade-offs. READ

WRITE SPACE

STCS ICS

Turns out it’s not enough. But can we do better?
■ Leveled strategy and Size-tiered (or ICS) cover different regions

• Interesting regions cannot be reached with either strategies.

• But interesting regions can be reached by combining data layout of both strategies

• i.e. a hybrid (tiered + leveled) approach

READ

WRITE SPACE

STCS ICS

LCS

Let’s work to optimize space efficiency then
■ A few high-level goals:

• Optimize space efficiency with overwrite workloads

• Ensure write and read latency meet SLA requirements

■ That’s Space Amplification Goal (SAG) for you.

■ Increased storage density per node? YES.

■ Reduce costs? YES.

A few facts about this feature
■ This feature (available since Scylla Enterprise 2020.1.6) can only be used with Incremental Compaction

■ Compaction will dynamically adapt to the workload to meet requirements

■ Under heavy write load, compaction strategy will work to meet write latency requirement.

■ Otherwise, strategy works to optimize space efficiency to the desired extent

■ Translates into:

• Storage Density per node ++

• Costs --

• Scale ++

READ

WRITE SPACE

 ICS+SAG

Enabling the space optimization (SAG)

■ This will enable the feature with a space amplification goal of 1.5

■ The lower the configured value the higher the write amplification

■ Adaptive approach minimizes the impact of extra amplification

■ Gives user control to reach interesting regions in the three-dimensional efficiency space

ALTER TABLE keyspace.table

 WITH compaction = {

 'class': 'IncrementalCompactionStrategy',

 'space_amplification_goal': '1.5',

 };

Space optimization in action…

A common schema for time series looked like…

■ The field date is used to
bucket each time series
(represented by an unique
sensor id)
• For example, with each

partition limited to one
day
• Then application creates

a new partition with a
new date every single
day

• Aggregation, querying a
time series becomes
more complex as
involves reading all
partitions which overlap
with a time range

■ That’s lots of complexity
pushed to the application

CREATE TABLE billy.readings (
 sensor_id int,
 date date,
 time time,
 temperature int,
 PRIMARY KEY ((sensor_id, date), time)
)

Why bucket in time series?
■ Large partitions were known to causing all sorts of problems

• Index inefficiency when reading from the middle of a large partition

• Latency issues when repairing large partitions

• High resource usage and read amplification when querying multiple time windows

• Reactor stalls which caused higher P99 latencies

• And so on…

■ Consequently applications were forced to “bucket” partitions to keep their size within a limit.

Bucketed vs Unbucketed time series

Window

sstable 1 sstable 2 sstable 3 sstable 4

Bucketed partitions for a
single time series

Unbucketed partition for a
single time series

Time series made much easier for you!
■ But those bad days are gone!

• Scylla allows a large partition to be efficiently indexed: O(logN)

• Scylla’s row-level repair allows large partitions to be efficiently repaired

• TimeWindowCompactionStrategy can now efficiently query multiple time windows

• by discarding SSTable files which time range is irrelevant for the query

• Incrementally open the relevant files to reduce resource overhead

• Therefore, read amplification and resource usage problems are fixed

A schema for time series can now look like…

■ There’s no longer any field date in schema, meaning that:

• Application won’t have to create new partitions on a fixed interval for a time series

• Querying a time series will be much easier as only a single partition is involved

■ Bucketing days are potentially gone!

■ Lots of complexity reduced in the application side

CREATE TABLE billy.readings (
 sensor_id int,
 time time,
 temperature int,
 PRIMARY KEY (sensor_id, time)
)

Upcoming improvements
■ Compaction becoming overall more resilient / performant:

• Changes were recently made to make Cleanup, Major compactions more resilient when system is running
out of disk space

• Dynamic control of compaction fan-in to increase overall compaction efficiency

• Based on observation that efficiency is a function of number of input files and their relative sizes

• Don’t dilute the overall efficiency by submitting jobs which efficiency is greater than or equal to
efficiency of ongoing jobs

• Tests show that write amplification is reduced under heavy write load while keeping space and read
amplifications within bounds

• Makes the system adapt even better to changing workloads

• More stability. More performance.

Upcoming improvements
■ Reduce compaction aggressiveness by:

• Improvements in I/O scheduler (Pavel Emelyanov covers this in depth in his talk)

• Improvements in Compaction backlog controller

• Aiming at improving tail latency and overall system stability.

■ Off-strategy compaction (Asias He covers this better)

• Make repair-based node operations more efficient, faster

• Consequently, better elasticity

Thank you!

Stay in touch
Raphael S. Carvalho

@raphael_scarv

raphaelsc@scylladb.com

