SCYLLASUMMIT2022

Compaction Enhancements:
Increased Storage Density
and Time Series

Made Much Easier .

Raphael S. Carvalho
Software Engineer

@ scyLLa

@ scyLLa

SCYLLA

) &

Raphael S. Carvalho

Software Engineer at ScyllaDB

m Member of the ScyllaDB storage team
= Responsible for the compaction subsystem

m Previously worked on Syslinux and OSv

SCYLLASUMMIT2022

Agenda

= Space optimization for incremental compaction
= “Bucketless” time series, i.e. time series made much easier for you

m Upcoming improvements

) @

SCYLLASUMMIT2022

Let’s take a look back

= Incremental compaction (ICS) introduced in enterprise release 2019.1.4
= Known for combining techniques from both size-tiered and leveled strategies

m Fixes the 100% space overhead problem in size-tiered compaction, increasing disk utilization significantly.

Incremental Compaction Strategy

Two SSTables
Memtable (each 7 fragments long)

S|S|T|A|B|L|E
SIS|T|A|B|LIE

SIS|S S| T[FH A Al B By L LY E|E

Compacted into a single run consisting of up to 14 fragments

SCYLLASUMMIT2022

Is it enough?

m Space overhead in tiered compaction was efficiently fixed, however...

= Incremental (ICS) and size-tiered (STCS) strategies share the same space amplification (~2-4x)
with overwrite workloads, where:

They cover a similar region in the three-dimensional efficiency space, also known as RUM conjecture
trade-offs.

READ

WRITE SPACE

SCYLLASUMMIT2022

Turns out it's not enough. But can we do better?

m Leveled strategy and Size-tiered (or ICS) cover different regions

Interesting regions cannot be reached with either strategies.
But interesting regions can be reached by combining data layout of both strategies

i.e. a hybrid (tiered + leveled) approach

READ

WRITE SPACE

SCYLLASUMMIT2022

Let's work to optimize space efficiency then

= A few high-level goals:
Optimize space efficiency with overwrite workloads

Ensure write and read latency meet SLA requirements

SCYLLASUMMIT2022

o

= That's Space Amplification Goal (SAG) for you.
= Increased storage density per node? YES.

SCYLLASUMMIT2022

A few facts about this feature

m This feature (available since Scylla Enterprise 2020.1.6) can only be used with Incremental Compaction
m Compaction will dynamically adapt to the workload to meet requirements

= Under heavy write load, compaction strategy will work to meet write latency requirement.

= Otherwise, strategy works to optimize space efficiency to the desired extent

m Translates into:

READ

Storage Density per node ++
Costs -

Scale ++

WRITE

SCYLLASUMMIT2022

Enabling the space optimization (SAG)

i ALTER TABLE keyspace.table
WITH compaction = {

'class'": 'IncrementalCompactionStrategy’,

'space_amplification_goal': '1.5',

m This will enable the feature with a space amplification goal of 1.5
m The lower the configured value the higher the write amplification
m Adaptive approach minimizes the impact of extra amplification

m Gives user control to reach interesting regions in the three-dimensional efficiency space

SCYLLASUMMIT2022

Space optimization in action...

Disk usage (GB)

14 |
4% |

10

5 "j H . ﬂi .

ICS with SAG —

¥ i

SAIG=O SAIG=2 SAIG=1.5 SAIG=2 SAIG=1.25

0 500 1000 1500 2000 2500

Time (seconds)

SCYLLASUMMIT2022

3000

A common schema for time series looked like...

__

i CREATE TABLE billy.readings (
i sensor_id int,

date date,

time time,

temperature int,

PRIMARY KEY ((sensor_id, date), time)

SCYLLASUMMIT2022

Why bucket in time series?

m Large partitions were known to causing all sorts of problems
Index inefficiency when reading from the middle of a large partition
Latency issues when repairing large partitions
High resource usage and read amplification when querying multiple time windows
Reactor stalls which caused higher P99 latencies

And so on...

m Consequently applications were forced to “bucket” partitions to keep their size within a limit.

SCYLLASUMMIT2022

Bucketed vs Unbucketed time series

-+ Window ——

sstable 1 sstable 2 sstable 3 sstable 4

Unbucketed partition for a
Bucketed partitions for a single time series
single time series

SCYLLASUMMIT2022

Time series made much easier for you!

m But those bad days are gone!

Scylla allows a large partition to be efficiently indexed: O(logN)

Scylla’s row-level repair allows large partitions to be efficiently repaired

TimeWindowCompactionStrategy can now efficiently query multiple time windows
by discarding SSTable files which time range is irrelevant for the query
Incrementally open the relevant files to reduce resource overhead

Therefore, read amplification and resource usage problems are fixed

SCYLLASUMMIT2022

A schema for time series can now look like...

i CREATE TABLE billy.readings (
i sensor_id int,

I time time,

| temperature int,
i PRIMARY KEY (sensor_id, time)

m There's no longer any field date in schema, meaning that:
-+ Application won't have to create new partitions on a fixed interval for a time series
* Querying a time series will be much easier as only a single partition is involved

m Bucketing days are potentially gone!

m Lots of complexity reduced in the application side

SCYLLASUMMIT2022

Upcoming improvements

m Compaction becoming overall more resilient / performant:

+ Changes were recently made to make Cleanup, Major compactions more resilient when system is running
out of disk space

+ Dynamic control of compaction fan-in to increase overall compaction efficiency

Based on observation that efficiency is a function of number of input files and their relative sizes

Don't dilute the overall efficiency by submitting jobs which efficiency is greater than or equal to
efficiency of ongoing jobs

Tests show that write amplification is reduced under heavy write load while keeping space and read
amplifications within bounds

Makes the system adapt even better to changing workloads

More stability. More performance.

SCYLLASUMMIT2022

Upcoming improvements

m Reduce compaction aggressiveness by:
* Improvements in /0 scheduler (Pavel Emelyanov covers this in depth in his talk)
« Improvements in Compaction backlog controller
+ Aiming at improving tail latency and overall system stability.
m Off-strategy compaction (Asias He covers this better)
- Make repair-based node operations more efficient, faster

« Consequently, better elasticity

SCYLLASUMMIT2022

Thank you!

Stay in touch

Raphael S. Carvalho

y @raphael_scarv
ﬂ raphaelsc@scylladb.com

SCYLLASUMMIT2022

